Perovskite-Info weekly newsletter

Published: Tue, 08/31/21

Weekly perovskite industry and market news
 

The Perovskite-Info newsletter (August 31, 2021)

Cannot read this? View it online here

Perovskites enable novel memory light-emitting memory devices

Researchers from National Taiwan Normal University and Kyushu University have developed a new memory device, readable through both electrical and optical methods, that needs only a perovskites to simultaneously store and visually transmit data.

All-inorganic perovskite quantum dot light-emitting memories imageSchematic of the CsPbBr3 QD-based LEM device. Image from Nature Communications

By integrating a light-emitting electrochemical cell with a resistive random-access memory that are both based on perovskite, the team achieved parallel and synchronous reading of data both electrically and optically in a ‘light-emitting memory.’

Read the whole story

New additive enables perovskite solar modules with 19.2% efficiency

Researchers from the University of North Carolina have developed a mini perovskite solar module with a power conversion efficiency of up to 19.3% efficiency based on a novel approach for interface engineering.

The new device was created using a new technique for stabilizing the embedded perovskite-substrate interfaces in the solar cells. Common approaches, the researchers explained, had previously focused on stabilizing perovskite-metal electrode interfaces through surface passivation or post-fabrication treatment. “Degradation of perovskite solar cells starts from the interfaces, including both perovskite-metal electrodes and perovskites-substrates, where defects enrich,” the team stated in the new paper. “Stabilizing the embedded bottom interfaces is as important as that of [the] top interface.”

Read the whole story

Ergis develops customizable high-performance pQD barrier films

Last year, Poland-based Ergis Group launched an OLED encapsulation film platform called Ergis noDiffusion®. The company is currently testing its film solutions at customer sites in Asia, the EU and the US, and it is now starting to offer the same platform for the protection of quantum dot films, including perovskite-based QDs for use in display and lighting applications.

Ergis noDiffusion QD barrier image

These new films can be tuned to fit specific needs. Ergis can deploy its films on several substrate types, with varying film thickness, and the barrier properties can be tuned to be between 10-6 to 10-3. This means that custom films can be created to suit the specific sensitivity of the pQDs for water vapor and to achieve specific product lifetime or other required properties.

Read the whole story

Oxford PV explains the benefits of pairing perovskites with silicon

Scientists from Oxford PV have recently published a study describing how pairing metal halide perovskites with conventional silicon leads to a more powerful solar cell that overcomes the 26% practical efficiency limit of using silicon cells alone.

“We identified perovskites as the perfect partner for a tandem system with silicon,” commented author Laura Miranda Pérez.

Read the whole story

Saule Technologies announces first installation of sun breakers with perovskite solar cells

Saule Technologies recently announced the launch of the first installation of photovoltaic blinds - sun breakers with perovskite solar cells - In Lublin, Poland. This first-in-the-world commercial implementation of perovskite solar cell technology was a collaboration with the client company Aliplast.

The World Premiere of Sun Breaker Installation With Perovskite Solar Modules imageImage from Saule Technologies' website

Saule Technologies, which recently celebrated the opening of its first production line of perovskite solar cells, now marks another milestone in its development in the form of premiering its solar sun blinds with perovskite solar cells on the Aliplast factory facade in Lublin. The first part of the project was completed– sun blinds with over 32m2 of perovskite solar modules were installed.

Read the whole story

Researchers examine the potential of perovskites for next-gen LED-based data communications

Researchers from the University of Surrey and the University of Cambridge have examined how two semiconducting materials can satisfy the telecommunication industry's hunger for huge amounts of data at increasing speeds. Light-emitting diode (LED)-based communications techniques allow computing devices, including mobile phones, to communicate with one another by using infrared light. However, LED techniques are underused because in its current state LED transmits data at far slower speeds than other wireless technologies such as light-fidelity (Li-Fi).

The researchers from Surrey and Cambridge, along with partners from the University of Electronic Science and Technology of China, examine how organic semiconductors, colloidal quantum dots (CQDs) and metal halide perovskites, can be used in LED-based optical communications systems.

Read the whole story

NREL and NASA test perovskite solar cells in space

Researchers at NREL, working with teams from NASA, are testing ways to bring production costs of solar cells down and transforming how PV technologies could work in space as well.

The latest test will evaluate the potential use of perovskite solar cells in space and assess the durability of materials used in those cells. NASA's Dr. Kaitlyn VanSant worked with Ahmad Kirmani, Joey Luther, Severin Habisreutinger, Rosie Bramante, Dave Ostrowski, Brian Wieliczka, and Bill Nemeth at NREL to prepare the perovskite cells and materials. Eight of these samples are scheduled to launch to the space station in August and another set of 25 samples will be launched in the spring of 2022. The samples, each of which are a square inch in size, are part of the Materials International Space Station Experiment (MISSE) program and will be fastened to the outside of the orbiting platform.

Read the whole story