Perovskite-Info weekly newsletter
Published: Tue, 03/09/21
The Perovskite-Info newsletter
March 9, 2021
Having trouble reading this email? View it online here.
Perovskite-based sensors can help detect harmful pesticides and toxins
Various dangerous chemicals are currently used for agriculture and industry, including fumigants like methyl iodide, which is used to control insects and fungi. The wrong amounts or incorrect use of these fumigants can be harmful to people and degrade the ozone layer. As it’s invisible and doesn’t smell, it’s hard to tell whether there are dangerous amounts of methyl iodide present, and until now the best way to test for it was in a laboratory using expensive, complicated equipment, which isn’t practical in many real-world settings. Some cheaper, lightweight detection methods have been tried, but they didn’t have enough sensitivity and took too long to deliver results.
Now, a research team led by the ARC Centre of Excellence in Exciton Science, along with Australia’s national science agency CSIRO and the Department of Defense, has found a perovskite-based way to detect methyl iodide, with the accuracy, flexibility and speed necessary for practical use. This new sensing mechanism is also versatile enough for use in detecting a wide range of fumigants and chemical warfare agents.
Researchers reach excellent results on air processed methylammonium free PSCs via scalable technique
A research team, led by Dr. Luigi Angelo Castriotta at the at University of Rome Tor Vergata's CHOSE Center for Hybrid and Organic Solar Energy, has reported impressive results on methylammonium free perovskites processed in air, using a scalable technique based on infrared annealing and potassium doped graphene oxide as an interlayer.
The team reached efficiencies of 18.3% and 16.10% on 0.1cm2 cell and on 16cm2 module respectively, with enhanced stability compares to the standard multi cation reference.