Perovskite-Info weekly newsletter

Published: Tue, 03/03/20

Perovskite-Info  

The Perovskite handbook

Peppermint oil and walnut aroma to enable HT material that prevents lead leakage in perovskite solar cells
2020-02-27 11:54:15-05

Researchers at the Pohang University of Science & Technology (POSTECH) have developed eco-friendly-solvent processable hole transport polymers by using peppermint oil and walnut aroma food additives and the polymer can prevent lead leakage.

The POSTECH research team consisted of Prof. Taiho Park and Junwoo Lee, that developed Alkoxy-PTEG - hole transport polymers that could be dissolved in peppermint oil, by applying ethylene glycol side chains when producing perovskite solar cells. Also, the team confirmed that this polymer captured leaking lead in aging perovskite solar cells.


Read more


International consortium announces 25% efficiency for perovskite CIGS solar cell
2020-02-27 12:16:35-05

Scientists from Hasselt University, imec, VITO, EnergyVille and international partners within the PERCISTAND consortium have announced that they achieved an energy efficiency of 25% with a thin-film solar cell.

Bart Vermang, coordinator within the PERCISTAND consortium, describes the development of thin-film solar cells as ‘Pioneering’. The consortium, which partly consists of the collaborations within EnergyVille and Solliance, has succeeded in achieving a record energy efficiency with thin film solar cells. ‘We’ve achieved an energy efficiency of 25 percent for the first time, which is just as much energy as a traditional solar cell can generate on a day-to-day basis. And we haven’t yet reached the upper limit of our thin-film solar cells.’


Read more


KAIST team produces perovskites at reduced temperatures to improve efficiency of single-crystal PSCs
2020-02-28 07:00:00-05

KAIST researchers have designed a method to make perovskite crystals at lower temperatures, that could lead the way towards lower-cost solar cells by eliminating defects that reduce efficiency.

Most current work on perovskite solar cells focuses on polycrystalline versions, where the efficiency record is 25%, say Omar Mohammed and Osman Bakr, materials scientists at King Abdullah University of Science and Technology. But polycrystalline films are only a few hundred nm thick, whereas single crystals can be grown to approximately 20 µm. The thicker films can absorb more light so single-crystal solar cells could prove to be superior. The problem is that so far, single-crystal lead perovskite solar cells don’t reach 20% efficiency.


Read more


Italian research team develops graphene-enhanced tandem perovskite cell with 26.3% efficiency
2020-03-03 01:11:25-05

Italian researchers from two Italian institutions claim to have developed a two-terminal tandem perovskite-silicon solar cell with a conversion efficiency 26.3%.

Structure of graphene-enhanced PSC image

The researchers added graphene to the titanium dioxide electron selective layer used in a perovskite solar cell to increase chemical stability. The two-terminal cell was made by stacking two sub-cells which were fabricated and optimized separately. The new device blends the advantages of thin-film perovskite and silicon-based heterojunction cells, according to its developers.


Read more



The Perovskite handbook

 
Perovskite-Info | Introduction | Perovskite Solar