Perovskite-Info weekly newsletter

Published: Tue, 01/29/19

Perovskite-Info  

The Perovskite handbook

UNIST team demonstrates new lead-free perovskite
2019-01-23 01:36:24-05

A team of researchers from UNIST in South Korea has identified a tin-based perovskite which could open new possibilities for the application of lead-free perovskites in solar cells. The cesium-tin based double perovskite material, Cs2SnI6, had previously been identified as promising for use in solar cells, however little research into the perovskite’s surface properties had been carried out.

UNIST team demonstrates new lead-free perovskite image

The team created a three-electrode system allowing them to confirm that charge transfer occurred through the surface state of the material; and used this knowledge to engineer a Cs2SnI6 based organic dye sensitized solar cell.


Read more


OIST researchers boost the stability and scalability of perovskite solar cells
2019-01-23 02:27:58-05

Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have reportedly resolved a fundamental weakness in perovskite solar cells (PSCs). Their innovations appear to improve both the devices' stability and scalability and could be key to commercializing PSCs.

OIST researchers boost the stability and scalability of perovskite solar cells  image

The study supports prior evidence that a commonly used material in PSCs, called titanium dioxide, degrades the devices and limits their lifetime. The researchers replaced this material with tin dioxide, a stronger conductor without these degrading properties. They optimized their method of applying tin dioxide to produce stable, efficient and scalable PSCs. "We need solar modules that can last for at least 5 to 10 years. For now, the lifetime of PSCs is much shorter," said Dr. Longbin Qiu, first author of the paper and a postdoctoral scholar in the OIST Energy Materials and Surface Sciences Unit, led by Prof. Yabing Qi.


Read more


Tokai team tests the influence of different forms of titanium oxide on PSC performance
2019-01-28 04:22:31-05

Researchers at Tokai University report a systematic study on the effects that using different forms of titanium oxide in planar perovskite solar cells has on the performance of the devices.

How the use of different forms of titanium oxide influences perovskite solar cell performance image

The team from Tokai university focused on the electron-transport layer. The material of choice for this component is often titanium oxide, whose electronic structure makes it easy to collect electrons from the perovskite layer. Titanium oxide has several crystal polymorphs including anatase, brookite, and rutile. They have different structures and properties and their distinct morphologies influence the quality of the perovskite layer, so the choice of polymorph influences the overall performance of the solar cell. This is why understanding this influence is important for optimizing the efficiency of devices.


Read more



The Perovskite handbook

 
Perovskite-Info | Introduction | Perovskite Solar