Perovskite-Info weekly newsletter

Published: Tue, 06/27/17

Perovskite-Info weekly newsletter


 
 
2017-06-25 06:38:49-04

Researchers from Spain have shown a hybrid perovskite compound that reportedly has great potential in solid-state cooling applications, due to exhibiting giant barocaloric effects near room temperature and under low pressures. Other materials are known to exhibit high caloric effects at room temperature, but many of them require high pressures and are not feasible for commercial applications.

The perovskite material was synthesized through standard wet chemical techniques. To quantify and characterize the material’s caloric effects, the researchers used a combination of X-ray diffraction (XRD, Siemens D-5000 diffractomer), differential scanning calorimetry (DSC, TA Instruments Q2000) and high-pressure DSC (Setaram mDSC7 EVO). They also used a synchrotron PXRD to obtain a Rietveld analysis and calculate the entropy change.


Read more...
 
 


 
 
2017-06-25 07:01:20-04

Researchers at Aalto University have developed a method for improving perovskite-based solar cells, that builds on previous breakthroughs improving the efficiency and longevity of such cells using printing methods (carbon back contact based perovskite solar cells or CPSCs). These findings make it possible to further enhance the efficiency of these types of solar cells.

In the new method, the perovskite solar cells were exposed to 40-degrees in a chamber where humidity was kept in the level of 70% (±5%). This kind of environment normally degrades the properties of perovskite solar cells. In this case, the treatment led to surprising growth of the perovskite crystals, which naturally absorb sunlight and generate electricity. “The photovoltaic performance was significantly enhanced, and the overall efficiency increased almost 45%,” say the researchers.


Read more...