Perovskite-Info weekly newsletter

Published: Tue, 02/07/17

Perovskite-Info weekly newsletter


 
 
2017-02-02 05:22:19-05

The Australian Nuclear Science and Technology Organisation (ANSTO) has collaborated with researchers at the University of Queensland in Australia, and Shandong University and Nanjing Tech Universities in China on research investigating the possible synergistic effects of a new perovskite cathode material for a low-temperature solid-oxide fuel cell (LT-SOFC) that demonstrates impressive and stable electrochemical performance below 500 °C.

Solid-oxide fuel cells (SOFC) convert the chemical energy in fuel into electricity directly by the oxidation of the fuel. These cells are considered to be highly efficient, exhibit long-term stability, produce low emissions, and are relatively low cost.


Read more...
 
 


 
 
2017-02-06 04:33:07-05

Researchers from the Energy Department's National Renewable Energy Laboratory (NREL) have found that surface recombination limits the performance of polycrystalline perovskite solar cells. In such cells, the sunlight creates mobile electrons whose movement generates power, but upon encountering defects can slip into a non-productive process. Known as a recombination, this process reduces the efficiency of a solar cell.

The NREL team examined the surface recombination in lead iodide perovskites, and determined that recombination in other parts of a methylammonium perovskite film is less important than processes that are happening on the surface, both the top and bottom. The team explained that multiple sources of recombination exist, and that surfaces are often overlooked when paying attention to recombination in favor of grain boundaries and bulk defects.


Read more...
 
 


 
 
2017-02-07 02:38:52-05

Researchers from Skoltech’s Institute of Problems of Chemical Physics and Moscow State University have designed an inorganic perovskite solar batteries. The new devices reportedly exhibit very high efficiency in light conversion (10.5%).

The team said that: "our devices demonstrate tremendous efficiency and excellent repeatability of electric characteristics from sample to sample". "The obtained results demonstrate the high potential of inorganic complex halogenides which offers new opportunities for target design of photoactive materials for effective and stable perovskite solar batteries."


Read more...