Perovskite-Info weekly newsletter
|
|
|
2017-03-05 07:38:00-05
A team of researchers from the U.S-based Georgia Institute of Technology have designed ultrafine perovskite nanofibers as highly efficient and stable catalysts for OER - oxygen evolution reaction, a component reaction of the electrochemical splitting of water into hydrogen and oxygen. Water splitting is a key step in a number of sustainable energy technologies including hydrogen production, fuel cells, and rechargeable metal-air batteries. The OER takes place at the anode of an electrolyzer, while the hydrogen evolution reaction takes place at the cathode. The energy required for the reaction is supplied by an electronic current. Currently, a large overpotential is required to accelerate the OER. For this reason, water splitting technologies for hydrogen production are not very competitive as the increased energy required results in more expensive hydrogen compared with production from natural gas. Therefore, much research is focused on the search for cost-effective, efficient and stable catalysts for the OER that can reduce the required overpotential. The new research highlights the potential of doped double perovskite nanofibers as the next generation of OER catalysts.
Read more... |
|
|
2017-03-07 03:09:23-05
Researchers at the Centre for Hybrid and Organic Solar Energy (CHOSE) of the University of Rome “Tor Vergata”, along with researchers at the Italian Institute of Technology (IIT) and the University of Applied Sciences in Crete (TEI), have stated that they set a new record for conversion efficiency of a perovskite photovoltaic module with an area larger than 50 cm2. The success was achieved as part of Graphene Flagship, the 1 billion euro European project that promotes graphene-based innovation in sectors like energy, electronics, technology and medicine. Perovskites photovoltaic modules' efficiency is usually demonstrated in the laboratory on cells less than 1 cm2 in size, whereas the new test was performed on modules with an area larger than 50 cm2. The electronic and chemical properties offered by graphene have made it possible to overcome the many difficulties related to the realization of large-area perovskite solar panels.
Read more... |
|
|
2017-03-07 07:08:11-05
A team of researchers from the University of Macau (UM), Nanjing Tech University, and Nanyang Technological University, Singapore, has announced a significant breakthrough, laying a theoretical foundation for high-efficiency and low-cost perovskite light emitting diode (LED). The research is said to be able to significantly improve the luminous efficiency of perovskite LED and have the potential to advance low-cost, high-efficiency LED displays and LED light sources. The team discovered that the slow bimolecular recombination that drives 3D lead-halide perovskites' excellent photovoltaic performance is conversely a fundamental limitation for electroluminescence. The team found that the slow bimolecular recombination limitation can be overcome so that high-efficiency electroluminescence can be achieved.
Read more... |
|
|