Researchers at Purdue University have found that nickel-based perovskites have exceptional properties for use as solid electrolytes in fuel cells. Unlike conventional electrolytes, these nickel-based perovskites are chemically stable in the fuel cell’s environment, which could lead to higher performing and longer lasting fuel cells.
Schematic of the perovskite samarium nickelate (SNO)-electrolyte solid-oxide fuel cell.
Solid-oxide fuel cells are considered as one of the most efficient types of fuel cells. They typically use polymers or ceramics as an electrolyte, but finding an effective solid electrolyte—one that conducts protons but blocks electrons—at low operating temperatures of 300–500°C has been a challenge. Most materials, when exposed to low pressure, start to lose oxygen and become electron conductors; The electrolyte separator becomes leaky so it can short circuit the fuel cell or it can start to crack and allow fuel to mix with oxygen.